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Motivation: Evaluating model’s ability to predict outcome
without intervention requires data from a randomized
control trial (RCT), which is often expensive to conduct.

RCT Overview
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Problem Statement: How to estimate model’s
performance under no intervention with RCT data?
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Gap: standard evaluation is unbiased but only uses
data from the control group; naively augmenting it
with data from the treatment group introduces bias.
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Theorem 1: bias of naive augmented AUROC.

When using AUROC as the metric, the bias of naive augmented evaluation is:

RCT specific parameters
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Measuring Model Performance in the Presence of an Intervention
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Proposed Approach: Nuisance Parameter Weighting (NPW), a novel evaluation approach
leveraging all RCT data to produce unbiased performance estimates via nuisance parameters.

Step 2. Reweight the treatment data with nuisance parameter estimates
* Given unbiased nuisance parameter estimates, NPW removes the
evaluation bias from naively incorporating treatment data.

Step 1. Estimate Nuisance Parameters

LwX) =Py|x,T=0 @)
Outcome probability without intervention

2. 7(X)=P(Y|X, T =1) — w(X)
Conditional average treatment effect (CATE) (

Note: Given RCT data, any supervised learning
method guarantees unbiased estimates!

(A) AMR-UTI Dataset (B) Readmission Dataset
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Empirical Results: NPW improves real-world model evaluation:

* |Inthe AMR-UTI dataset [1], NPW produces more accurate model ranking,
measured in C-index.

* Inthe Michigan Medicine’s Readmission dataset, NPW achieves higher
statistical power at differentiating the performance between two readmission
prediction models (i.e., LACE & Epic).

Conclusion: researchers evaluating models with limited RCT
data should consider using NPW to improve sample efficiency!

Reference:
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